モジュラーデザインは巨大なPing-Pong Ball LEDディスプレイ

Ping-Pongボールに多数の用途があります。海。それが判明しているので、それらはLEDピクセルのディフューザとして有用であり、大きな個々のLEDを必要とせずに大型ディスプレイの構築を可能にします。

[David]は、厳密にモジュラー設計のおかげで、任意の大きなLEDディスプレイの構築を可能にする3D印刷部品を使用してLED Ping-Pongボールディスプレイを開発しました。基本単位は、単一のLEDモジュールを保持し、標準の卓球ボールを取り付けるためのカップ状の構造を有する小片である。これらの基本単位のうち25個は、配線ダクトも含むパネルにまとめられている。最後に、構造外方向に構造剛性を与えるクリップのおかげで、これらのパネルの数をディスプレイに組み合わせることができます。

シングルパネルは25のLEDを保持し、ケーブルテレビダクトが付属しています。最良の場合、複数のフレームを接続するためのクリップがあります。
もちろん、LEDモジュールの取り付け単にディスプレイを作成するのに十分ではありません。LEDは電源ラインとデータラインに接続する必要があります。 [David] 1,800個のワイヤーを切り取って剥ぎ取ることの考えを解放し、その理由でこのプロセスを自動化する方法を考案しました。定期的に断熱材を燃やすこと。その後、これらのワイヤをLEDにはんだ付けし、データバスに沿ってピースを滑り落ちることの問題でした。

完成したパネルは、データ信号を生成するためのTeensy 3.2の組み合わせによって駆動され、画像を処理するためのラズベリーPI。下に埋め込まれたビデオにかなり顕著な結果を見ることができます。これがあなた自身のものを構築するように促したならば、あなたはSTLファイルとすべてのコードが[David]のプロジェクトページで利用可能であることを聞くことを嬉しく思います。

大規模なLEDディスプレイは常に見るのが常に楽しいですが、これはピンポンボールをディフューザとして使用する最初のものではありませんが、そのモジュール性とオープンソースの設計により、これはおそらく複製が最も簡単です。もちろん、ピンポンボールの良いプロバイダーがあると仮定しています。

Leave a Reply

Your email address will not be published.

Related Post

Moto eをKitkat 4.4.4に更新して、Slimkat ROMMoto eをKitkat 4.4.4に更新して、Slimkat ROM

を使用して、クラスで最も安価で強力な競合他社を使用して、Moto EはMotorola(Google Company)のAndroidベースのスマートフォンです。 1.2 GHzデュアルコア皮質A7プロセッサ、1 GB RAM、Adreno 302 GPU、4.3インチのGorilla Glassディスプレイ、KitKat 4.4.2のすぐ外のボックスを備えています。残念ながら、少なくともまだこのデバイスに着陸する現在のKitKat 4.4.4に関するニュースはありません。しかし、XDAフォーラムでは、カスタムメイドのROMを介してキットカット4.4.4の味をデバイスに味わっているXDAフォーラムのデザイナーにとって手の届かないことは何もありません。この方法は、Moto EをKitkat 4.4.4に更新します。 Cybojenixの一貫した困難な仕事は、Kitkat 4.4.4に基づいてMoto Eに基づいてSlimkat ROMを獲得し、SlimおよびAOSPソースで定期的に更新され、最新の状態に保ちます。 ROMは、カスタマイズの程度、大規模な機能、ソフトウェアアプリケーションの拡張、およびさらに多くの人に人気があります。さらに、Slimkat ROMのいくつかの主要な機能が、Moto Eで設定するものの詳細を提供するために指摘されています。 特徴 »本物の暗いスリム:スリムROMのUI強化により、ガジェットスタイルを1回だけクリックして完全に暗く、完全に変えます。 »スリムな露出:はるかに優れたマルチタスクエクスペリエンスのための完全にオーバーホールされたリコンパネル。 »ショートカット:通知やロックスクリーンエリアなど、個別のアプリにアクセスできるショートカットがどこにでもあります。 »クイック設定タイル:必要なタイルをカスタマイズし、数量を追加、排除、さらには変更します。 »Slimpie:パイコントロールに似ていますが、多くの側面で異なります。 »カメラの強化:CAMアプリには、膨大な数のMODと高品質のブーストが含まれています。 詳細については、Slimroms Webサイトにアクセスしてください。

Samsungのフラッグシップほど重要な数字で販売していないにもかかわらず、Google Pixel GadgetsをストックファームウェアとロックブートローダーSamsungのフラッグシップほど重要な数字で販売していないにもかかわらず、Google Pixel Gadgetsをストックファームウェアとロックブートローダー

に戻す方法、Googleのデバイスは、以前のNexusラインでさえも、熱心な3番目のラインでも喜びを感じています。パーティーデザイナーのサポート。これが、2013年第4四半期にリリースされたNexus 5が、5年後に最も現在のAndroid 8.1 Oreoを更新できる理由です。 Google Pixelガジェットは、この点で顕著なものではありません。その背後にこのような強力な近所があるため、Google Pixelガジェットには多くのROMと他のMODがあり、そのうちのいくつかは他のガジェットに移植される可能性が高いです。 MODやカスタムメイドのROMのインストールなどのことを行ったことがある場合は、物事が常にうまくいかないことを理解できます。以前にバックアップを作成したことがあるかもしれませんが、そうでないかどうかはどうでしょうか?さて、Google Pixelガジェットをファームウェアに戻す方法を正確に紹介します。 要件 もちろん、ロック解除されたGoogle Pixelデバイス。あなたはおそらく、他にどのようにそれを台無しにしたのかを正確に正確にしているので、あなたはすでにロック解除されたガジェットを持っているでしょう。 Google Pixelデバイス用の適切なストックファクトリー画像。これは、以下のダウンロードセクションからダウンロードできます。 Google SDKプラットフォームツールが必要です。これは、デスクトップOSに応じて、以下のダウンロードセクションからダウンロードできます。 携帯電話でUSBデバッグを有効にします。 インテリアストレージ、メッセージ、連絡先の合計、およびその他の必要なデータをバックアップすることを確認してください。このプロセスには、デバイスのフォーマットが必要です。ただし、必要に応じてこれを防ぐことができます。 Windows PCを使用している場合は、同様に最新のGoogle USBドライバーをインストールするための要件が​​あります。 ダウンロード SDKプラットフォームツール – ダウンロードされたアーカイブを抽出し、プラットフォームツールというフォルダーを取得する必要があります。 ウィンドウズ マック Linux Google Designer

ニューラルネットワーク:あなたはそれをとても単純に持っていますニューラルネットワーク:あなたはそれをとても単純に持っています

ニューラルネットワークは現在、ハッカーの数、学生、研究者、そして企業の数が増えています。最後の復活は、World Wide WebやNo Leural Network Toolsがほとんどまたはまったくなかった場合、80年代、90秒にありました。現在の復活は2006年頃に始まりました。ハッカーの観点から、他のリソースと他のリソースと同様に提供されたのは、今すぐ申し出されていますか。私自身のために、ラズベリーPIのGPUはいいでしょう。 80年代と90年代 ニューラルネットワーク80S / 90年代の本だけでなく、MAGS ヤングズのために、米国が世界的な幅広いウェブの前に何もすることができたのだろうか、ハードコピー雑誌は私たちが新しいことを意識させるのに巨大な部分を演じました。それほどそれは科学系誌の1992年9月の特別な問題であり、神経学的ネットワークに紹介された脳、生物学的および人工的な種類の両方を紹介しました。 それからあなたは自分のニューラルネットワークをスクラッチから書くか、または他の誰かからのソースコードを順序付けることができます。私はその科学的アメリカの問題のアマチュア科学者列からフロッピーを秩序だった。あなたはあなたのためにすべての低レベル、複雑な数学をするニューラルネットワークライブラリを同様に購入するかもしれません。トロント大学からのXERIONと呼ばれる無料シミュレータも同様でした。 本屋の科学のセクションに目を向けておくことは、被験者の時折の本を上げました。伝統的なものは、Rumelhart、McClelland et al。鉱山の好ましいものは、神経計算であり、自己組織化マップ:ロボットアームを制御するニューラルネットワークに興味を持っていた場合に有用である。 あなたが参加するかもしれない会議と同様に短いコースと同様に短いコースがありました。 1994年に参加したセミナーは、その後、Geoffrey Hinton、Toronto大学、そして今でも現場のリーダーです。当時の最善の年次セミナーは、今日はまだ強くなっている神経情報処理システム会議でした。 そして最後に、私は公開された論文のためにライブラリを命じることを思い出します。私のセミナー論文のスタック、プログラム配布資料、コピー記事、およびその期間からの手書きノートは約3インチの厚さです。 それから物事は比較的静かになった。ニューラルネットワークはいくつかのアプリケーションで使用を発見したが、彼らは限られた研究界の外で、世界の視点と同様に彼らの誇大宣伝に住んでいなかった、彼らは問題を止めた。いくつかのブレークスルーとともに、そしてそれから最後に2006年頃には、再び世界中で展開されたので、物事は静かに残った。 現在が届きます 私たちはここでのツールに焦点を当てていますが、これは主に行われました。 3層以上の深さを超えるネットワークのための新しいテクニック、今や深いニューラルネットワークと呼ばれる トレーニングをスピードアップするためのGPU(グラフィック処理単位)の使用 多数のサンプルを含むトレーニングデータの可用性 ニューラルネットワークフレームワーク 現在、さまざまなライセンスで無料のライセンスを無料で使用するためのダウンロードのために提供されているフレームワークと呼ばれる数多くのニューラルネットワークライブラリがあり、それらの多くはオープンソースフレームワークです。より人気のあるもののほとんどは、GPU上のニューラルネットワークを実行することができます。また、ほとんどの種類のネットワークをサポートするのに十分な柔軟性があります。 これがより人気のあるもののほとんどがあります。彼らはすべてFNNを除いてGPUサポートを受けています。 テンソルフロー 言語:Python、C